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Abstract
A numerical method providing the optimal laser intensity profiles for a direct-drive inertial confinement fusion scheme
has been developed. The method provides an alternative approach to phase-space optimization studies, which can prove
computationally expensive. The method applies to a generic irradiation configuration characterized by an arbitrary
number NB of laser beams provided that they irradiate the whole target surface, and thus goes beyond previous analyses
limited to symmetric configurations. The calculated laser intensity profiles optimize the illumination of a spherical target.
This paper focuses on description of the method, which uses two steps: first, the target irradiation is calculated for initial
trial laser intensities, and then in a second step the optimal laser intensities are obtained by correcting the trial intensities
using the calculated illumination. A limited number of example applications to direct drive on the Laser MegaJoule
(LMJ) are described.

Keywords: direct drive; inertial confinement fusion; laser system

1. Introduction

In the direct-drive (DD) inertial confinement fusion (ICF)[1, 2]

context a spherical capsule containing the deuterium–
tritium (DT) nuclear fuel is irradiated by laser beams. The
final goal is to generate energy gain via a nuclear fusion
reaction: D + T → α + n + 17.6 MeV. The external
shell of the capsule absorbs a fraction of the incoming
laser energy producing a plasma; the plasma temperature
(≈keV) increase provides the outward expansion of the
low-density corona and launches a series of inward shock
waves. These shock waves compress the DT payload in a
high-density shell that implodes and reaches stagnation. In
the classical central ignition scheme, the high-density shell
confines a small amount (≈10 µg) of DT fuel – called a hot-
spot – which is heated to high temperature (≈10 keV) and
compressed to areal densities comparable with the α-particle
range (

∫
ρ dr ≈ 0.3 g cm−2), thus providing the ignition of

the thermonuclear fusion reactions. Recently, the new shock
ignition (SI) scheme[3] has been proposed. In the SI scheme
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the fuel is first compressed by the usual DD technique, then a
high-power laser pulse (≈hundreds of TW) is used to launch
a strong shock wave which provides the fuel ignition.

In all ICF schemes the capsule irradiation must be very
uniform in order to inhibit growth of dangerous hydrody-
namic instabilities that can prevent a successful fuel com-
pression. In the promising SI scheme the requirements in
terms of irradiation uniformity are less stringent in compari-
son with the classical central ignition scheme. Nevertheless,
the irradiation uniformity represents one of the major con-
straints in ICF and a great deal of effort has been dedicated
to its optimization.

In this paper we propose a numerical method to calculate
the optimal laser intensity profiles of a generic number NB
of laser beams irradiating a spherical target. Analytical
optimization of the laser intensity profiles has been already
performed for configurations based on the geometry of the
Platonic solids[4–7]. These analyses always provide axially
symmetric laser intensity profiles where all the NB laser
intensities are equal. These solutions can be applied to
laser configurations such as Gekko XII[8] (NB = 12) or
Omega[9] (60 beams) but are not suitable for laser configura-
tions like the National Ignition Facility (NIF)[10], the Laser
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MegaJoule (LMJ)[11] or the smaller Orion[12] facility where
the locations of the beams are optimized for the indirect-
drive[13] ICF scheme. Indeed, in these latter cases the
optimal laser intensity profiles must be adapted to the laser
configuration. As a consequence, the laser intensity profiles
are not necessarily equal to each other or axially symmetric.

2. Numerical method to optimize the intensity profiles

The proposed numerical method allows us to find the laser
intensity profiles that optimize the illumination uniformity
for a given laser configuration. These calculations are
performed within an illumination model in which laser
refraction is neglected, photons propagate linearly and the
results only apply to the low-power foot-pulse that charac-
terizes the first few ns of an ICF irradiation, the so-called
imprint phase. Thus, the solution guarantees the uniformity
of the first shock wavefront[14].

In the past, optimizing methods have usually been based
on analytical or numerical parametric studies looking for the
laser parameters that minimize the illumination nonunifor-
mity. In contrast, in the present case a sort of predictor–
corrector method is used: in a first step, trial laser intensity
profiles are used to evaluate the – imperfect – irradiation of
the spherical target; in a second step, the laser intensities
are recalculated using the results of the first step in order
to provide perfect illumination uniformity.

The model problem is characterized by a spherical target
of radius r0 irradiated by NB laser beams. The target centre
is located at the origin of a Cartesian coordinate system
O(x, y, z) and the laser beam directions are characterized
by the unitary vector rn defined by their polar angles θn
and ϕn (see the details of the geometry in Figure 1). Each
given elementary surface element of the target, ds = r2

0 dΩ ,
is associated with a vector direction r(θ, ϕ) of co-latitude
θ ∈ [0− π ] and longitude ϕ ∈ [0− 2π ]. The laser intensity
profile gn(x ′, y′) of the NB beams is defined in the planes
orthogonal to the beam directions rn . In these planes we
define a secondary Cartesian coordinate system O ′(x ′n, y′n)
where the orthogonal axes are given by the two versors:
x′n = (rn ∧ z)/|rn ∧ z| and y′n = (x′n ∧ rn)/|x′n ∧ rn|.
In this way the y′n-axis is located in the meridian plane
containing the nth laser beam axis (rn), while the x′-axis
is orthogonal to both y′n and rn . Therefore, there is a one-
to-one correspondence between a position r0r(θ, ϕ) over the
target surface and the corresponding coordinate x ′n = r0r ·x′n
and y′n = r0r · y′n , on the focal plane of the nth laser beam.

The elementary surface ds, located at the polar coordinates
(θ, ϕ), is irradiated by a given number (6NB) of laser beams
and receives a total laser intensity I (θ, ϕ). This intensity
is given by the contributions of all the incoming intensities
associated with the laser profiles gn(x ′, y′) multiplied by the
scalar product (r · rn) to account for projection of the surface
area. Thus, for the NB laser beams the irradiation of the

rn

North

South

z

y

x

r
nθ

Figure 1. Spherical target and main coordinate system [O]; vector direction
r of a generic surface element and versor of the nth laser beam, rn ;
coordinate system [x ′, y′] for the nth laser intensity profile.

spherical target surface is given by

I (θ, ϕ) =
∑

n

gn(x ′, y′)(r · rn)
β , (1)

where the scalar product (r · rn) is set to zero when
it assumes a negative value. The exponent β must be
larger than or equal to one and account for the specific
assumption on the laser–capsule coupling, e.g., setting β = 2
recovers the hypothesis of the laser absorption assumed by
Schmitt[6]. Hereafter we use the standard illumination model
for which β = 1. For a given laser intensity profile gn ,
direct application of the illumination model provides the
laser intensity I (θ, ϕ) used to calculate the root-mean-square
(r.m.s.) deviation σ , which is assumed as a measure of the
target irradiation nonuniformity:

σ =
{

1
4π

∫ 2π

0

∫ π

0
[I (θ, ϕ)− Ia]2 sin(θ)dθdϕ

}1/2/
Ia,

(2)
where Ia is the average intensity calculated over the whole
sphere.

Of course, the condition to obtain σ = 0 is to generate a
perfectly uniform irradiation over the whole target surface,
i.e., to realize I (θ, ϕ) = I0, where I0 is the desired intensity
over the target surface. This could be done by a simple re-
normalization of the laser intensity profiles, by

g′n(x ′, y′) = gn(x ′, y′)[I0/I (θ, ϕ)]. (3)

Now, substituting the old intensity profiles gn with the new
ones g′n in Equation (1) will provide I (θ, ϕ) = I0 and
therefore σ = 0. A necessary condition to realize the
uniform constant intensity illumination – I (θ, ϕ)= I0 – over
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the whole target surface is that each elementary surface of the
target must be irradiated by at least one laser beam. Indeed,
if some part of the target is not irradiated at all, e.g., for
NB = 1, the method fails. Thus, the optimization is obtained
in two steps: first, by means of a set of trial laser intensity
profiles gn , the target irradiation I (θ, ϕ) is calculated, and
then these trial intensities are corrected – by using Equa-
tion (3) – to provide the optimized profiles g′n . In these
calculations the target surface is subdivided into 180 × 360
elementary elements and thus the method provides a discrete
number of coordinates (x ′, y′) where the laser intensity
profiles g′n are defined. These data are used to estimate the
intensity profiles, g′n , on the focal plane where the spatial res-
olution has been set to dx ′ = dy′ = r0/200, which provides
a total of 400 × 400 values for the laser intensity profiles.
With these values the irradiation nonuniformities σ for the
cases calculated in this paper are kept below σ = 10−4. It
is worth noticing that an increase of the resolution on the
intensity profile or a reduction of the number of elementary
surfaces on the target surface increases the precision of the
calculation, providing a smaller σ .

The optimal laser intensity profiles, solution of the cou-
pled Equations (3) and (1), depend on the choice of trial
intensities gn ; therefore, the set of solutions is not unique.
The trial intensity must be well posed in order to generate
reasonably final optimized profiles. Hereafter, we use the
trial intensity given by the scalar product: gn(x ′, y′) = |r ·

rn| = [r2
0 − x ′2 − y′2]1/2/r0; a higher intensity is assigned

to the beam centre and it vanishes at the target border; the
aim of this choice is to look for a solution g′n that maximizes
the laser–capsule coupling. It is worth noticing that although
the trial beams are axially symmetric, the final solution will
not be symmetric, as we will see later. Moreover, in these
calculations we used the same trial function – the scalar
product – for all the gn ; nevertheless, the method applies
equally well even if the trial functions are different for each
laser beam.

3. Profiles for a two-ring 2D irradiation configuration

As a first example we considered a two-dimensional (2D)
axially symmetric laser configuration where the beams can
be approximated by two annular rings at the co-latitudes
θ1 and θ2 = π − θ1; this is achieved by imposing that
I (θ, ϕ) ≡ I (θ) = [∫ I (θ, ϕ)dφ]/(2π). The two optimal
intensity profiles g′1(θ1) and g′2(θ2) have been calculated for
different values of θ1. In this perfectly symmetric case,
the two solutions are equal and are just rotated by 180◦,
g′1(x

′, y′) = g2(x ′,−y′). The laser intensity profiles g′1
normalized to one and corresponding to the annular ring of
the north hemisphere are shown in Figure 2 for different
polar angles, θ1.

In these frames the grey curves show the projection of
the equator in the focal plane, while the full grey dots
localize the projection of the north pole. In these images

the laser intensity has been normalized to 1 and the colour
scale ranges from 0 to 1. For small polar angles, e.g.,
θ1 = 10◦, the laser beams are closer to the z-axis, thus the
surfaces of the polar areas are highly irradiated with a nearly
orthogonal angle of incidence; on the contrary, for larger
angles, it is the equatorial belt that will be over-irradiated
in comparison with the polar regions. To compensate
for this unbalanced irradiation the optimal laser intensity
profile provides different intensities in correspondence to the
equatorial and polar target areas. Specifically, at smaller
angles (see, e.g., θ1 = 10◦) a maximum intensity is directed
towards the equator, while at larger angles (e.g., θ1 = 80◦)
the laser intensity is higher in proximity to the polar areas.
It is worth noticing that the laser intensity profile becomes
circular (axially symmetric) when θ1 equals the Schmitt
angle θ1 = θS = 54.7◦ (Ref. [6]). This is not surprising;
indeed, as shown by Schmitt, the angle θS is the best co-
latitude if the axisymmetric beam intensity profile is given
by I0 cos(γ ) with β = 1.

4. Optimal profile for some LMJ configurations

An LMJ configuration consisting of 40 quads has been
considered in this paper. The quad of the LMJ is composed
of a bundle of four laser beams and provides a maximum
laser energy (power) of 30 kJ (10 TW) at 3ω (λ = 351 nm).
The polar coordinates of the 40 quads are shown in Figure 3.
Here, we assume that each quad can be characterized by
a single beam with a given laser intensity profile. Four
configurations have been considered: (A) a total of four
quads (two in the second ring and two in the third ring),
labelled A in Figure 3; (B) five quads in the second ring and
five in the third ring (ten quads, labelled B); (C) a total of
eight quads, two quads in each of the four rings (red quads
for the north hemisphere); (D) five quads in each ring (blue
quads for the south hemisphere) for a total of 20 quads.

The optimization method has been applied to the four laser
configurations A–D. As above, all the NB trial intensities are
given by the scalar product: gn(x ′, y′)= (r·rn). The optimal
intensity profiles g′n provided for these configurations are
shown in Figure 4. These profiles have been normalized
to one by dividing the intensities by their maximum value:
Max[g′]A = 1.52I0; Max[g′]B = 0.62I0; Max[g′]C =
0.92I0; Max[g′]D = 0.38I0. These images correspond
to the beams of the north hemisphere, while those of the
south hemisphere are obtained by a rotation of 180◦. In
these irradiation configurations the optimal laser intensity
profiles provide an r.m.s. irradiation nonuniformity σ lower
than 10−4.

The configuration A has only two beams per hemisphere,
and their optimized intensity profile shows three zones at
higher intensity: one located below the equator and the other
two closer to the pole. The intensity profile for the ten
beams of configuration B is shown in Figure 4 (bottom left
image). In this case the higher intensity is situated between
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1 = 10°θ 1 = 20°θ 1 = 30°θ

1 = 40°θ 1 = 50°θ 1 = Sθ θ

1 = 60°θ 1 = 70°θ 1 = 80°θ

r0

Figure 2. Optimal laser intensity profiles g′1(x ′, y′) (north hemisphere) for an axially symmetric beam configuration. The intensity profiles have been
normalized to one (g′1/Max[g′1]) and the scale colour ranges from 0 to 1. Full dots correspond to the north pole and the grey curve is the equator projection
on the focal planes.

θ

Figure 3. Polar coordinates of 40 quads of the LMJ facility. Quads for the configurations A and B; red quads of the north hemisphere (C) and blue quads of
the south hemisphere (D).
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(A) (C) (D)

(B) (C) (D)

Figure 4. Optimal laser intensity profiles g′n normalized to one (north hemisphere) for the LMJ configurations A–D. The power imbalance is given by the
parameter β and the laser intensity scale colour varies linearly from 0 to 1.

the beam’s centre and the equator position and the shape
of the laser intensity is not symmetric due to the rotation
of 18◦ between the hemispheres. In the configurations C
and D the numerical method provides two intensity profiles:
one for the beams of the first ring and a second for those
of the second ring. In these two cases the calculations
provide similar shapes. Moreover, the numerical results
naturally introduce a power imbalance ratio between the
maximum beam intensities: βC = IMax(49◦)/IMax(33.2◦) =
88.4% and βD = 82.7. It is worth noticing that these
optimum intensities are located off-centre. This could be re-
garded as the application of the polar direct-drive[15] (PDD)
technique where a centred laser intensity profile moves
towards the equator to compensate the over-irradiation of the
polar zones[16]. In addition, it has been shown[17, 18] that
for the configurations C and D elliptical intensity profiles
provide a more uniform irradiation than circular ones. The
current calculations confirm this trend and show that the
optimal intensity profiles are closer to an elliptical shape –
characteristic of an indirect-drive installation – rather than
circular profiles.

The NIF configuration has been also analysed, providing
four optimal laser intensity profiles. In this case the 48
quads of the NIF facility are located at four rings in each
hemisphere: four quads at θ1 = 23.5◦, four at θ2 = 30.0◦,
eight at θ3 = 44.5◦ and eight at θ4 = 50.0◦. The method of
optimization, initialized with the trial intensity gn(x ′, y′) =
(r · rn), produces intensity profiles similar to those found for
configuration D. These calculations also supply the optimal
power imbalances β1 = 69.3%, β2 = 77.2%, β3 = 94%,
while the maximum power (β4 = 1) is assigned to the laser
beams located at the larger angle θ4 = 50.0◦.

5. Conclusions

In conclusion, we developed a general method to calculate
the optimal laser intensity profiles that optimize the illumina-
tion nonuniformity of a spherical target. The method can be
used for any DD laser configuration accounting for a general
number NB of laser beams, provided that the beams irradiate
the whole target surface. In some sense this is a kind of
predictor–corrector method that consists of two steps: firstly,
initialized by a set of NB trial laser intensity profiles, the
imperfect surface irradiation is calculated; then, the beam
profiles are recalculated in order to correct the previously
estimated nonuniform illumination.

A set of four laser configurations based on the LMJ
facility has been considered. In these cases, the opti-
mal intensity profiles have been individuated using axially
symmetric trial profiles. The resulting optimal intensity
profiles are not axially symmetric and their shapes look
like to those envisaged by the PDD technique; in addition,
these calculations also predict the optimal beam-to-beam
power imbalance. These results assume perfect beam-
to-beam power imbalance, neglecting laser pointing errors
and target positioning uncertainties; deviation from these
idealized assumptions would damage the uniformity of the
target illumination.
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